Paper Realization on No Anchor-based YOLO Pipeline

Code Project: yolov3-pytorch BaseLine:原代码中的初始模型 Target Assigner 1. IoU Aware OD https://readpaper.com/pdf-annotate/note?pdfId=4545076807438327809&noteId=2569501418004823040 解决问题: iou 作为重要的检测指标没有直接引导模型训练; nms操作时只考虑cls score或者conf score的问题,加入iou预测分支,与cls/conf score相乘作为联合分数作nms排序; 做法: 除了常规的cls loss和location loss之外,引入了一个iou prediction分支: 训练过程中该分支的gt是每次对模型输出进行解码得到prediction的bbox,跟真实的gt进行计算得到iou,作为iou prediction的gt; 将iou prediction输出的iou值与cls score相乘,作为nms排序时使用的分数。 2. PAA:用于anchor based模型 Probabilistic Anchor Assignment with IoU Prediction for Object Detection 沿用了[IoU Aware OD]中的IoU prediction分支,将cls score和iou prediction分支的输出相乘作为最终的score,进行GMM概率分布估计。 PAA(Probabilistic Anchor Assignment,概率锚框分配)是用于基于锚框(Anchor-based)物体检测方法中的一种优化技术,旨在提高锚框分配的准确性和效率。基于锚框的方法,如 Faster R-CNN、YOLO 和 SSD,依赖于预定义的锚框来预测目标的边界框(bounding box)。然而,传统的锚框分配策略(例如,最大重叠(IoU)分配或是固定的锚框匹配规则)可能存在一些问题,如误匹配或过度依赖于单一的评分标准。 PAA的背景与问题 在基于锚框的物体检测中,常见的做法是通过计算预测锚框与真实目标框之间的**交并比(IoU, Intersection over Union)**来进行匹配。对于每个锚框,会选择与之重叠度最高的真实框进行分配,这种策略称为硬分配(hard assignment)。 然而,这种方法有以下几个问题: 过度依赖IoU阈值:使用硬IoU阈值进行锚框分配,可能会导致误匹配或错过一些具有较低IoU但仍然能正确预测的目标。 锚框的多样性不足:一个固定的锚框策略可能无法涵盖目标物体在不同尺度、形状等方面的多样性。 负样本问题:传统方法容易将一些与真实目标无关的锚框当作负样本,导致训练时的负样本过多,从而影响学习效率。 PAA的优化思路 PAA(概率锚框分配)优化通过引入概率模型来代替传统的硬分配方式,从而提供更灵活的锚框分配方式。其核心思想是根据预测框与真实框之间的匹配度(如IoU)来概率性地分配锚框,而不是直接将锚框分配为正样本或负样本。 具体来说,PAA的优化策略如下: 基于概率的锚框分配:PAA不再使用固定的阈值来进行锚框的硬分配,而是通过计算每个锚框与目标框的匹配概率来进行软分配。这种方法能够更好地处理那些IoU值较低但仍然能够准确检测到目标的情况。 概率分配机制:对于每个锚框,PAA根据它与每个真实目标框之间的匹配程度(通常是IoU或其他匹配度度量)计算一个匹配概率,并将锚框以概率的方式分配给不同的目标。这种分配方式可以缓解传统硬分配方法中由于误匹配带来的影响。 改进的负样本处理:在传统的锚框分配中,负样本(即没有与任何目标框重叠的锚框)往往会影响模型的训练,特别是当锚框的负样本数量过多时。PAA通过对负样本的概率分配,使得负样本对模型的影响更小,从而提高了训练效率。...

October 10, 2024 · 1 min · 81 words · lvsolo

Paper Realization on No Anchor-based YOLO Pipeline

Code Project: new-YOLOv1_PyTorch BaseLine:原代码中的初始模型 改进方式一:FPN 加入FPN模块,在多个尺度的特征图上进行预测; BiFPN实现 AugFPN实现 改进方式二:Loss FocalLoss实现+应用: Focal Loss在分类loss中的应用 1.1 PolyFocalLoss 1.2 VariFocalLoss: IoULoss: IoU及其改进形式 2.1 GIoULoss 改进方式三:Attention 改进方式四:layer、算子结构优化 其他改进方式: EMA DHSA IoU Aware FCOS?ATSS?CenterNet Multi Head FPN VS BaseLine Table Based on new-YOLOv1_PyTorch 0.Baseline Model mAP(07test) LogFile BaseLine 0.6709 eval_log/log_eval_416X416_160_baseline 1.FPNs 1.1 Origin FPN Model mAP(07test) LogFile BaseLine 0.6709 eval_log/log_eval_416X416_160_baseline FPN/MultiHeadFPN 0.7149 eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 1.2 BiFPN Model mAP(07test) LogFile BaseLine 0.6709 eval_log/log_eval_416X416_160_baseline FPN/MultiHeadFPN 0.7149 eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 FPN/MultiHeadBiFPN upsample nearest 0....

October 10, 2024 · 2 min · 287 words · lvsolo