IoU Loss及其改进
based on new-yolov1-pytorch project 2.4 IoU Loss IoU Loss Model mAP(07test) LogFile FPN/MultiHeadFPN 0.7149 eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 IoULoss replace origin txtytwth loss 0.558 log_myYOLOWithFPNMultiPredWithIoULoss_iouweight10_yolo_160 添加中心点距离最近的target assign机制,避免按label顺序匹配gt object对应的特征点,IoULoss replace origin txtytwth loss 0.571 log_myYOLOWithFPNMultiPredWithIoULoss_iouweight10_targetassian_by_min_dist_yolo_160 GIoULoss Model mAP(07test) LogFile FPN/MultiHeadFPN 0.7149 eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 GIoULoss replace origin txtytwth loss 0.6674 log_myYOLOWithFPNMultiPredWithGIoULoss_SGD_iouweight1_tvgiouloss_sum_target_assign_by_min_dist_yolo_130 DIoULoss CIoULoss SIoULoss EIoULoss Luxury IoU Loss: condition mAP txtytwth_iou_weightsum_loss = txtytwth_loss + giou_loss * 1