jishi tips for yolov5 project and python3.7

requirements python env yolov5 commit id yolov5 requirements.txt pip train code pytorch 转换为 tensorrt engine run pt run engine TODO requirements python env conda 22.9.0 python==3.7.4 yolov5 commit id yolov5 commit id: 3f02fdee1d8f1a6cf18a24be3438096466367d9f yolov5 requirements.txt # Usage: pip install -r requirements.txt # Base ------------------------------------------------------------------------ gitpython #>=3.1.30 matplotlib==3.2.2 #>=3.3 numpy==1.16.5 #>=1.22.2 opencv-python==4.6.0.66 #>=4.1.1 Pillow # >=10.0.1 psutil # system resources PyYAML>=5.3.1 requests>=2.23.0 scipy>=1.4.1 thop>=0.1.1 # FLOPs computation #torch>=1.8.0 # see https://pytorch....

November 29, 2023 · 14 min · 2866 words · lvsolo

jishi tips for ultralytics project and python3.8

environment building 安装tensorrt-8.6.1环境: 手动下载tensorrt lib8.6.1后上传至服务器安装(https://pypi.nvidia.com/tensorrt-libs/tensorrt_libs-8.6.1-py2.py3-none-manylinux_2_17_x86_64.whl) 安装pycuda前, sudo apt-get install python3.8-dev libxml2-dev libxslt-dev tips pt2onnx 转换生成的如果是static的onnx,那么就无法生成dynamic的engine了 reference TODO dynamic shape model: https://zhuanlan.zhihu.com/p/299845547 training tips 💡 Add –cache ram or –cache disk to speed up training (requires significant RAM/disk resources). experiments TODO 0.如何将dynamic输入的模型调通?使用不加padding的letterbox得到正确结果 1.ultralytics默认选项设置训练出来的模型,对于resize、letterbox的适应性试验; 2.如果适应很好,可以替换letterbox 3.如果适应不好,需要: 1)使用torch重构letterbox; 2)使用cuda memcp的stride格式(存在么?) 使用cuda memcpy可以从torch tensor中拷贝么?或者直接使用torch tensor的cuda显存? 优化目前的myletterbox 5)训练一个真正的dynamic输入的模型 4.如何训练出可以接受resize输入,不需要补齐黑边的模型

November 27, 2023 · 1 min · 54 words · lvsolo