based on new-yolov1-pytorch project
2.4 IoU Loss
IoU Loss
Model | mAP(07test) | LogFile |
---|---|---|
FPN/MultiHeadFPN | 0.7149 | eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 |
IoULoss replace origin txtytwth loss | 0.558 | log_myYOLOWithFPNMultiPredWithIoULoss_iouweight10_yolo_160 |
添加中心点距离最近的target assign机制,避免按label顺序匹配gt object对应的特征点,IoULoss replace origin txtytwth loss | 0.571 | log_myYOLOWithFPNMultiPredWithIoULoss_iouweight10_targetassian_by_min_dist_yolo_160 |
GIoULoss
Model | mAP(07test) | LogFile |
---|---|---|
FPN/MultiHeadFPN | 0.7149 | eval_log/log_eval_myYOLOWithFPNMultiPred_with_sam_for_3_head_142 |
GIoULoss replace origin txtytwth loss | 0.6674 | log_myYOLOWithFPNMultiPredWithGIoULoss_SGD_iouweight1_tvgiouloss_sum_target_assign_by_min_dist_yolo_130 |
DIoULoss
CIoULoss
SIoULoss
EIoULoss
Luxury IoU Loss:
condition | mAP |
txtytwth_iou_weightsum_loss = txtytwth_loss + giou_loss * 1 |